
www.manaraa.com

Fine-grained sharing of encrypted sensor data over cloud
storage with key aggregation

Hung Dang, Yun Long Chong, Francois Brun, Ee-Chien Chang
School of Computing

National University of Singapore

Abstract
We consider a sensor network setting in which the sensed
samples are encrypted individually using different keys be-
fore being streamed to a cloud storage. For large systems
with high capacity, e.g. generating several millions of sam-
ples per day, fine-grained sharing of encrypted samples is
challenging. The straightforward solution is to send to a
user all decryption keys of each and every shared samples.
This approach does not scale up, for the number of keys
to be shared would overwhelm the data owner’s network
resources. Existing solutions, such as Attribute-Based En-
cryption (ABE) and Key Aggregation Cryptosystem (KAC),
can aggregate a number of keys into a single key of small
size, addressing the problem to a certain extent. However,
ABE generally incurs large overhead in ciphertext size, while
KAC requires quadratic reconstruction time with respect to
the number of keys to be reconstructed. These limitations
render them impractical in our applications. In this pa-
per, we first present an algorithmic enhancement for KAC
that reduces its reconstruction time for the combination of
range and down-sampling queries from quadratic to linear.
Further, we generalize such enhancement and discuss vari-
ous heuristics to boost the reconstruction time for arbitrary
(general) queries. We also give a clustering-based method
to trade-off the reconstruction time with the number of ag-
gregated keys to be issued. These improvements address the
main hurdle in adopting KAC for practical applications with
large datasets. Our experimental studies show that given
the query asking for 215 keys, the proposed enhancement
outperforms the original KAC by at least 90 times on range
and down-sampling queries, and achieves 8 times speed up
for general queries. It also shows that splitting the query
into 16 sub-queries, each of which is associated with a sep-
arate aggregated key, can further reduce the reconstruction
cost by 19 times.

1. INTRODUCTION
Incorporating cloud resources into wide-area sensor net-

work [31, 16] has recently been of growing interest. In such
solutions, the sensors continuously sense and stream samples
to the cloud, wherein various users can retrieve and process
the data. Nevertheless, storing sensitive data in public cloud
storage faces a higher risk of information leakage as demon-
strated by many well-known incidents [28]. A common wis-
dom is to protect the sensitive data from potentially curious
servers using strong cryptographic means. This, in turn,
poses various technical challenges in fine-grained sharing of
the encrypted data with multiple users. Although generic

Figure 1: CCTV network in the City of Pasadena under the
Real-Time Data Capture and Management Program. Each
icon indicate location of a camera.

techniques such as Attributed-Based-Encryption (ABE) can
facilitate fine-grained access control over encrypted data,
adopting these techniques in large-scale systems remains
challenging.

To illustrate the challenge, let us consider the following
scenario. A data owner has a collection of sensors deployed
along a city road network. The sensors continuously capture,
encrypt the samples individually using different encryption
keys before streaming the encrypted content to the storage
servers. The size of each sample can be varied (e.g hundreds
of Kbytes for images or only a few bytes of temperature read-
ing), and sampling rates can also be different (e.g. ranging
from 24 frames per second for video to single sample per
second for temperature reading). In addition, each sample
consists of multiple components; for example, scalable cod-
ing including different resolution layers. The data owner
wants to share selected samples with other users, e.g. shar-
ing images captured by 100 cameras along a particular road
segment, during every weekday from 6 am to 10 am at a
reduced rate of 1 frame per second, and at a low image reso-
lution. The users can be third party cloud-service providers
who are engaged by the data owner to perform certain pro-
cessing, or personnels who are authorised to access certain
cameras, etc. To handle multiple users, a fine-grained shar-
ing mechanism is necessary. Furthermore, due to privacy
concerns, it is desired that the samples remain encrypted
at rest in the storage servers, with the encrypted keys kept

www.manaraa.com

secret from all the untrusted parties.
In a straightforward download-and-share method, the

data owner simply retrieves the encrypted video, decrypts
and sends them to the users in real-time. Clearly, such solu-
tion does not scale for it consumes significant computation
and networking resources. Another method is to send all de-
cryption keys corresponding to those samples to the users.
The user can then use those keys to decrypt encrypted con-
tent which could be downloaded from the storage servers.
However, the number of keys in consideration can be very
large, equivalent to the number of samples to be shared. In
our example of sharing images extracted from 100 cameras
for four hours at the sampling rate of 1 frame per second,
the number of keys required per day is more than 1.4× 106.
Known techniques that “aggregate” all the keys into a single
key of small size [10, 14, 9, 30, 3] can address this issue to a
certain extent. Hence, instead of sending a large number of
keys to the user, the data owner only needs to have one small
aggregated key delivered. Unfortunately, these techniques
have their own limitations, rendering them impractical in
our context. In particular, key-policy Attributed-Based En-
cryption (KP-ABE)[14, 9] would lead to large overhead on
the ciphertext size, while Key-Aggregation Cryptosystem
(KAC) [10] incurs quadratic key reconstruction time with
respect to the number of keys to be reconstructed.

In this work, we place our focus on secure fine-grained
sharing of encrypted time-series data which can be found in
a wide range of applications. Indeed, many interesting sen-
sor data are inherently time-series in nature, such as CCTV’s
images or environmental readings. Moreover, the sensors are
typically spatially arranged. For example, the public dataset
made available by the US Department of Transportations’s
(US DOT) Real-Time Data Capture and Management Pro-
gram1 contains images captured by 103 cameras deployed
along roadway network in the City of Pasadena, California
(Figure 1). These images are indexed by the their times-
tamps and cameras’ locations. Major metropolitan cities
such as Beijing and London are reported to have hundreds
of thousands of surveillance cameras and sensors installed;
and the numbers are rapidly growing. For these sensor data,
we treat the spatial, temporal and other meta information
as non-sensitive, whereas the confidentiality of the actual
sensed samples is to be protected. Such assumption is rea-
sonable, since after all, the storage server is probably able
to derive the source and timing of the sensed data from the
received network packets.

Our solution adopts Key-Aggregation Cryptosystem
(KAC) [10] as the underlying cryptographic scheme. KAC
enables aggregation of decryption keys for arbitrary set S
of samples into a constant size key, but incurs high cost in
reconstruction, requiring O(|S|2) group multiplications to
reconstruct all keys in S. We make an observation that, for
a large class of queries, there are computation redundancies
in the reconstruction procedure. For combinations of mul-
tidimensional range (e.g. asking for samples from cameras
along a specific road segment during a specific time period)
and down-sampling (e.g. asking for 1 sample per second
instead of the original 24 samples per second) queries, we
give a fast reconstruction technique attaining optimal lin-
ear running time; i.e. (O|S|). For general query, speeding
up reconstruction time is also possible. We give two heuris-

1http://catalog.data.gov/dataset/

tics to derive the computation plan for those queries – one
assumes no pre-computation and the other makes use of pre-
computation and reuses intermediate values to further speed
up the reconstruction. Informally, the computation plan de-
scribes a specific order in which a sequence of computation
should be carried out. We also discuss a clustering-based
method to trade-off the number of the aggregated keys be-
ing issued for the reconstruction time.

Our enhancement addresses computational aspects of
KAC reconstruction (decrypt) algorithm while preserving
other characteristics including its semantic security and col-
lusion resistance. Thus, our system is provably secure. Ex-
perimental studies show that the proposed methods are effi-
cient, outperforming relevant alternatives by significant fac-
tors. To reconstruct 215 keys of down-sampled data within a
two-dimensional range, the reconstruction time taken by our
method is at least 90 times faster than the original KAC (see
Figure 8). For general query asking for the same number of
samples, our approaches achieve upto 8 times improvement
in reconstruction cost. The speeding up is further increased
to 19 times at the expense of splitting the query into 16
sub-queries, each of which is associated with one separate
aggregated key.

2. BACKGROUND ON KEY-AGGREGATE
ENCRYPTION

Key-Aggregate Encryption (KAC) [10] is a public key
cryptosystem that can aggregate any set of decryption keys
to derive a constant size decryption key. With a public key,
given a plaintext x and an index i ∈ [1, n], one can encrypt
x to get a ciphertext associated to the index i. Hence, if the
plaintexts are a sequence 〈x1, x2, . . . , xn〉, the ciphertexts
〈c1, c2, . . . , cn〉 form the corresponding sequence.

Similar to any typical public key cryptosystem, each ci-
phertext ci can be decrypted using the private key. In addi-
tion, KAC supports key aggregation. For any set of indices
S ⊆ {1, 2, . . . , n}, the secret key holder can generate a small
aggregated key KS for another user. With only the aggre-
gated key KS and the public key, any ci where i ∈ S can be
decrypted. However, the aggregated key KS is unable to ob-
tain information from ci for any i 6∈ S. KAC’s security relies
on decisional Bilinear Diffie-Hellman Exponent (BDHE)[5].

The KAC comprises of five basic functions, Setup, Key-
Gen, Aggregate2 and Decrypt.

• param ←Setup(1λ, n): Given the security parame-
ter λ and n, output a bilinear group G of prime or-
der p where 2λ ≤ p ≤ 2λ+1, a generator g ∈ G and
a random number α ∈R Zp, output the system pa-
rameter param = 〈g, g1, g2, ..., gn, gn+2, ..., g2n〉 where

gi = gα
i

.

• (PK,SK) ←KeyGen(): Pick a value γ ∈R Zp, out-
put the public and master-secret key pair: (PK = v =
gγ , SK = γ).

• ζ ←Encrypt(PK, i, x): Given a public key PK, an
index i ∈ {1, 2, ..., n} and a message x ∈ GT, randomly
pick t ∈R Zp and output ζ = 〈gt, (vgi)t, x · e(g1, gn)t〉.

2The function Aggregate is also known as Extract in the lit-
erature [10].

www.manaraa.com

• KS ←Aggregate(SK,S): Given a set S of indices
j’s, output the aggregated decryption key KS =∏
j∈S

gγn+1−j .

• {x,⊥} ←Decrypt(KS , S, i, ζ = 〈c1, c2, c3〉): If i /∈ S,
output ⊥, else output x = c3 · e(KS · ρ, c1)/e(ρ̂, c2)
where ρ =

∏
j∈S,j 6=i

gn+1+i−j and ρ̂ =
∏
j∈S

gn+1−j

The aggregated key KS only consists of a single group ele-
ment and thus its size is O(λ) where λ is the security param-
eter. However, decrypting cost for each ciphertext increases
proportionally to the size of the set. Specifically, given the
aggregated key KS corresponding to a set of ciphertext C
whose indices are in S, it takes O(|S|) group operations to
decrypt a single ciphertext in C, and thus O(|S|2) group
operations to fully reconstruct the ciphertext set. The high
reconstruction cost renders the scheme impractical for our
application.

3. PROBLEM DEFINITION

3.1 Sensor Data
We adopt a convention that [a, b] represents an inter-

val of integers from a to b, inclusively. We call L∆ =
[1, T1] × [1, T2] × . . . × [1, Td] a d-dimensional lattice with
the bounds T1, T2, . . . , Td. A hyper-rectangle S in L∆ is the
subset R1 × . . . × Rd of L∆ where each Ri is an interval in
the i-th dimension.

A sensor continuously senses and generates a sequence of
samples. A sample is represented by a tuple (i, x) where i
and x are its index and value respectively. The sample value
is the data captured by the sensor at a particular instance.
Its size can be varied (e.g hundreds of Kbytes for images or
only a few bytes for temperature reading). The index i is a
multidimensional point, representing the sample’s temporal,
spatial and other meta information such as resolution level.
We assume that some normalisations have been applied such
that the indices are mapped to points in L∆. Note that the
temporal information is not restricted to be one-dimension.
For example, temporal information can be represented as
a multidimensional point with day, month, year, etc as its
dimensions. The indices are considered non-sensitive. As
such, they can be stored in plaintext in the storage server
to facilitate efficient searching.

3.2 System Model

Owner

User

Sensor

c1, c2, c3
· · · , cn

S = {1, 2, 3, 101, 102, 103}

Parameter Setup

KSqS
encrypted
sensor data

C={c1, c2, c3,
c101, c102, c103}

Figure 2: System model supporting fine-grained sharing of
encrypted sensor data

Figure 2 illustrates our system model. To protect the
confidentiality of sensor data, samples are encrypted before

being streamed to the cloud. When an user wants to gain ac-
cess to a subset C of encrypted sensor data whose indices are
in the set S, the user requests a decrypting capability of C by
sending a query qS to the owner. Upon approval, the owner
issues an aggregated key KS and an optional “computation
plan for reconstruction”3 to the user. She can then down-
load the encrypted samples in C from the storage server and
follow the computation plan to reconstruct (decrypt) them
using KS

4. However, it is impossible for her to use such
KS to decrypt any sample which does not belong to C. An
additional layer of protection can also be implemented to
guarantee that only authorized users can download the rel-
evant encrypted samples. We discuss this in more details in
section 7.

3.2.1 Security requirements
For security analysis, we consider a worst case scenario

in which the storage server is completely under the user’s
control; i.e. she has full access to all encrypted samples
stored in the cloud storage.

The key aggregation must be collusion resistance. A collu-
sion attack is carried out by combining multiple aggregated
keys, with the goal of deriving more information than each
aggregated key can individually derive. For example, if an
user has the aggregated key to decrypt images of road seg-
ment A on Jan 1st, and another aggregated key for road
segment B on Feb 2nd, then he must not be able to obtain
other images, including images captured on A during Feb
2nd. We follow the model by Boneh et. al [6] on collusion
resistance.

We assume that sensors are trusted. Nevertheless, in case
a sensor is compromised and the secrets it holds are revealed
to an adversary, confidentiality of data generated by other
sensors must not be compromised.

3.2.2 Efficiency requirements
As the sensors and the users can be operating on low-

powered devices, it is crucial to keep computation load low.
Furthermore, although cloud storage is relatively low in cost,
the communication and storage overhead incurred by the
security mechanisms has to be sufficiently reasonable so as
to keep the cloud solution economically attractive. In view
of the above considerations, we focus on the following three
measures of performance:

Reconstruction time. Clearly, computation load of re-
constructing the keys from the aggregated key KS has to be
low5. In some applications (e.g. viewing of video stream),
the reconstruction time has to meet the real-time require-
ment. As mentioned in the introduction, the known KAC
scheme requires quadratic reconstruction time and thus is
unacceptable.

Size of aggregated key. To reduce the communication
between the owner and users, the size of the aggregated key

3The computation plan informs the user on specific sequence
of computations should be conducted to reconstruct the en-
crypted data with at better computational cost than the
naive approach of reconstructing each sample independently.
4To be accurate, the user first reconstruct the decryption
keys (using KS) which are then used to decrypt the en-
crypted samples. However, for brevity, we slightly abuse
the language and simply say that the user reconstructs the
encrypted samples using KS .
5We stress that the cost of deriving the computation plan is
not part of the reconstruction time.

www.manaraa.com

KS has to be small.
Overhead of ciphertext size. The overhead of cipher-

text size directly increases the storage and communication
cost of the storage server. Since the number of ciphertexts
is large, the actual multiplicative overhead on the ciphertext
size is a practical concern, especially for sample value that
are relatively small.

3.3 Query Types
We classify queries for sensor data into three types:

Q1 - d-dimensional range query.
This query asks for all samples whose indices reside in a

d-dimensional hyper-rectangle. For example, images from
cameras along a road segment during a certain period cor-
responds to a 2-dimensional range query.

In some cases, it is possible to represent multiple range
queries as a single range query. For example, the images
from 6 am to 12 pm of every weekday is an union of a series
of queries. We can represent these constraints in a single
query by re-arranging and “lifting” the one-dimensional time
component to multi-dimensions, i.e. decomposing the single
time dimension into four dimensions which are (1) time in a
day, (2) day in a week, (3) week number and (4) year.

Q2 - Down-sampling query.
This query asks for a down-sampled lattice. In one-

dimension, if one sample is extracted for every p samples,
we say that the down-sampling rate is 1/p. In higher di-
mension, a t-dimensional down-sampled lattice is the subset
L = {

∑t
i=1 aivi|ai ∈ Z} ∩ L∆ where each of the vi is a

d-dimensional vector and the basis {v1, v2, .., vt} is indepen-
dent. A down-sampling query is represented by its basis.

A query can also be an intersection of range and down-
sampling queries. For example, the query for a few images
per each hour captured along a road segment on a certain
day is a down-sampling range query.

Q3 - General query.
A general query asks for an arbitrary set of samples

which are not necessary a combination of range and down-
sampling. The query may be constructed by listing down
all the indices of the required samples. Alternatively, it can
also be a combination of an arbitrary set in some dimensions,
with range and down-sampling in the other dimensions. For
example, an query that asks for samples from an arbitrary
set of sensors during all weekend’s morning.

As the distribution of the queries is application-specific,
in this paper, we assume a simple distribution model for
Q3 query: the set S contains rβ indices that are randomly
selected from the interval [1, β] where r < 1 and β are some
parameters.

4. ALTERNATIVE CONSTRUCTIONS
Before presenting the proposed solution, we briefly discuss

a few alternative cryptographic solutions and their limita-
tions.

4.1 Top-down Hash-tree.
One possible approach is to use a binary tree to maintain

symmetric encryption keys (Figure 3) for sensor data. The
root is the master key, while the intermediate sub-keys are

generated in a top-down manner. The actual keys for en-
cryption/decryption are located at the leaves. Each sample
is associated with one external leaf, and is encrypted by the
corresponding key. In this construction, keys for m samples
in a range can be reconstructed using only O(log(m)) aggre-
gated keys. These aggregated keys are essentially interme-
diate sub-keys whose descendants are the m encryption keys
under consideration. For instance, in Figure 3, sub-keys 19,5
and 24 are aggregated keys from which encryption keys in
{4, 5, 6, 7, 8, 9} can be “reconstructed”.

However, it is not straightforward to extend this method
to support d-dimensions, where d > 1. A trivial method of
using multiple trees, one for each dimension, to generate d
keys for each sample is not secure against collusion attack
[25]. Furthermore, this method fails to aggregate keys for
down-sampling and general queries, such as ones asking for
encryption keys {1, 3, 5, 7, 9} or {1, 4, 5, 7, 10}.

Figure 3: Tree based construction for one-dimensional data.

4.2 ABE-based construction.
There are a few ways to employ Attribute-Based Encryp-

tion (ABE) to aggregate decryption keys for multidimen-
sional range query. The most intuitive approach is to adopt
Key-Policy ABE (KP-ABE)[19] in the following way: An
index is represented by a set of attributes, each of which
corresponds to the location of an 1 in the index’s binary
representation. For instance, the index 9 = 10012 is repre-
sented by 2 attributes A0 and A3. In delegating decryption
ability of ciphertexts in a range of S, the data owner first
determines the “policy” A, which is a logical expression on
the attributes for indices in S. The aggregated key is then
determined from the policy. The size of the aggregated key
is often proportional to the number of logical operations
in the logical expression, and thus incurs a log(n) factor
overhead in specifying a range, where n is the system’s ca-
pacity (i.e. total number of samples encrypted under the
same security setting.). For example, if n = 210 and an
index set in question is S = [1019, 1023], then the policy
A = {A9 ∧A8 ∧A7 ∧A6 ∧A5 ∧A4 ∧A3}. Furthermore, the
ciphertext size of each index is proportional to the number
of attributes associated to it, which implies a multiplicative
log(n) factor overhead. Experimental studies also show that
the reconstruction time of this approach is slower than our
proposed method, probably due to the larger number bi-
linear map operations required. Finally, while it is easy to
express down-sampling of rate 1/p using short expression,
where p is a power of 2, it is not clear how to efficiently
express other down-sampling rates. Hence, it is not trivial
to obtain short aggregated key for other rates.

www.manaraa.com

4.3 Multi-dimensional Range Query over En-
crypted Data.

Shi et al. address Multi-dimensional Range Query over
Encrypted Data (MRQED) problem [25]. The work can
be viewed as an enhancement of the ABE-based construc-
tion, aiming to protect confidentiality of both query and
the indices. Specifically, if an index of a sample under con-
sideration is outside the queried range, one would learn no
information beyond the fact that an aggregated key fails
to decrypt its encrypted content. Note that in our applica-
tion, the indices are not considered secret and made publicly
available. Thus, we do not enforce this security requirement.
Similar to the ABE-based construction, MRQED admits an
overhead of at least log(n) multiplicative factor in ciphertext
size and aggregated key size, failing to meet our efficiency
requirements.

5. PROPOSED FAST RECONSTRUCTION
Owing to the fact that KAC satisfies our security and two

efficiency requirements (i.e. size of aggregated key and over-
head in ciphertext size) put forth earlier in Section 3.2, we
adopt its encryption and key aggregation procedures in our
system. We remark that by adopting these two procedures,
our system inherits KAC’s proven security. Interesting read-
ers are referred to [11] for further details on the security of
the scheme.

However, as briefly discussed in Section 2, KAC recon-
struction cost is expensive. In particular, reconstructing a
single ciphertext with index i using an aggregated key KS

(i ∈ S) requires the following two values (Section 2):

ρi =
∏

j∈S,j 6=i

gn+1+i−j (1)

ρ̂ =
∏
j∈S

gn+1−j (2)

ρ̂ is independent of i and can be computed only once for
all ciphertexts in S. The computations of ρis (i ∈ S) are
of more interest. A naive approach which computes each ρi
independently — not exploiting their relationship — would
incurs O(|S|2) group multiplications to compute all neces-
sary ρi (i.e. for all i in S). We observe exploiting their
relationship leads to a better computation cost.

In this section, we first introduce an algorithmic enhance-
ment for KAC reconstruction specifically targeting Q1 and
Q2 queries (Section 5.1). This enhancement reduces the
reconstruction time from quadratic to linear. We later gen-
eralize the technique — using dynamic programming — to
enable fast reconstruction for Q3 queries (Sections 5.2, 5.3).

5.1 Fast reconstruction for range and down-
sampling queries

5.1.1 Main observation
For Q1 and Q2 queries (or their combination), the indices

in S follows a specific pattern which straightforwardly per-
mits fast computations. Let us first consider a 1-dimensional
range S = [1,m] for some m. For clarity in exposition, let
us define ĝt = gn+1+t, and

Ri =
∏
j∈S

ĝi−j

for all i ∈ S. For each i, we have ρi = ĝ−1
i Ri, and thus it can

be easily computed from Ri. Now, we explore how to com-
pute all Ri efficiently. Under the straightforward method, to
compute Ri requires |S|−1 multiplications for each i, and a
total of |S|(|S| − 1) multiplications are required to compute
all Ris. However, by exploiting the recurrence relation

Ri+1 = (ĝi−m)−1 ·Ri · ĝi

we can obtain Ri+1 from Ri using only 2 multiplications.
This leads to a fast linear time algorithm that computes all
Ri’s recursively, which improves the original quadratic time
algorithm to linear time.

We next show how to extend this observation to enable
fast reconstruction for Q1 and Q2 queries.

5.1.2 Extension to multidimensional range queries
(Q1)

Let us first consider two dimensional lattice. Let
S = [1,m] × [1,m] be a rectangular range within the 2-
dimensional lattice with bound n in both dimension. Here,
the indices are two dimensional vectors. Let σ(x1, x2) =
x1(n − 1) + x2 be the mapping that maps the two dimen-
sional lattice to the one dimensional lattice. Similarly, to
decrypt the ciphertext with the index (i1, i2), the following
value has to be computed:

ρ(i1,i2) =
∏

(j1,j2)∈S,(j1,j2)6=(i1,i2)

gn2+1+σ(i1,i2)−σ(j1,j2)

Likewise, the term n2 + 1 in the subscript is simply some
fixed offset. For clarity, we can rewrite the coordinate, and
define ĝ(i1,i2) = gn2+1+σ(i1,i2) and R(i1,i2) as follow:

R(i1,i2) =
∏

(x,y)∈S
ĝ(i1,i2)−(x,y) =

m∏
x=1

m∏
y=1

ĝ(i1,i2)−(x,y)

Note that the required ρ(ii,i2) can be easily obtained from
R(i1,i2). Computing R(i1,i2) naively requires |S| − 1 group
multiplications. However, we can rewrite the above into a
recurrence relation:

R(i1+1,i2) = R(i1,i2)

m∏
y=1

ĝ−1
(i1,i2)−(i1−m,y)

m∏̃
y=1

ĝ(i1,i2)−(i1,ỹ)

Let us define

T(i1,i2) =
∏m
y=1 ĝ

−1
(i1,i2)−(i1−m,y), and

T̃(i1,i2) =
∏m
ỹ=1 ĝ(i1,i2)−(i1,ỹ).

By substituting the above definitions into the recurrence re-
lation, we have

R(i1,i2) = R(i1−1,i2)T(i1−1,i2)T̃(i1−1,i2).

Now, observe that T(i1,i2) can also be expressed as a recur-
rence relation and all of them can be computed in linear

time (with respect to |S|). Similarly for T̃(i1,i2). Putting
all together, we have a linear time algorithm to compute all
R(i1,i2)’s.

In general, for a d-dimensional range, the number of group
multiplications required is in O(d|S|). Since in our applica-
tion the dimension d is small, by treating it as a constant,
we have a linear time algorithm.

www.manaraa.com

5.1.3 Extension to down-sampling queries (Q2)
Let us consider an example in 2-dimension. Given an

independent basis {(3, 0), (0, 2)} of down-sampling, we can
transform the co-ordinate (x, y) to (x/3, y/2) such that the
required samples correspond to samples with integer coor-
dinate. Hence for an intersection of a down-sampled range,
the above linear time algorithm can be applied under the
transformed co-ordinate. In general, for a down-sampled
d-dimensional range, the number of group multiplications
required is also in O(d|S|). Note that additional computa-
tions are required to transform the coordinate and they are
significantly less expensive compare to the group multipli-
cations. We refer reader to [17] for further details on the
transformation which should be applied on the coordinate.

5.2 Fast reconstruction for General queries
(Q3)

The technique we discuss above reuses common terms
among different ρis to save computations. Such common
terms are apparent in Q1 and Q2 queries, but not so for Q3
queries. An interesting question to consider is how to find a
computation plan that evaluates all ρis with the least num-
ber of group multiplications for a given arbitrary S. Let us
now formally define the computation plan.

Definition 1 (Computation Plan). A computation
plan to evaluate a set of elements D from the public pa-
rameter is a weighted sequence of computation steps P =
〈p1, p2 . . . pz〉 such that pj is to be carried out before pj+1.
Each pj is a 3-value tuple 〈vn, vp, I〉 where vn is an element
in D to be computed at this step, vp is another element in D
computed previously, and I is a set of intermediate values.
Other values required in the computation are to be picked
from the public parameter. In addition, each computation
step pj is associated with a cost wj; the total cost of the
computation plan P = 〈p1, p2 . . . pz〉 is Cost(P) =

∑z
j=1 wj

We are interested in deriving a computation plan P =
〈p1, p2 . . . pz〉 that computes all required ρis with the mini-
mum number of group multiplications. Based on the above
definition, let us define the minimum cost computation plan
problem.

Definition 2 (Minimum Cost Computation Plan).
Given a set of elements to be evaluated D, the Minimum
Cost Computation Plan (MCCP) problem is to compute
the computation plan P = 〈p1, p2 . . . pz〉 whose cost (i.e.,
Cost(P) =

∑z
j=1 wj) is minimized.

With Definition 2, an optimal computation plan that eval-
uates all ρis is the solution of the MCCP problem in which
D is the set of all ρis and wj is the number of group multi-
plications required at each computation step pj .

It turns out that the MCCP problem is difficult, as one
may introduce intermediate values to reduce the number of
operations (i.e. cost). For instance, observe that in section
5.1, the intermediate values T(i1,i2) help to significantly re-
duce the number of multiplications. Indeed, although we do
not give a formal proof, we believe that this MCCP prob-
lem is reducible to the Steiner tree problem [13], which is
known to be NP-complete and has a few approximations
in the literature [8]. However, the reduction is not triv-
ial, and the approximations often hardly scale up for large
dataset. Instead, we opt to simplify the problem and give

g1A g2 g3 g4 g5 g6 g7 g8

g2B g3 g4 g5 g6 g7 g8 g9

g1Â g2 g3 g4 g5 g6 g7 g8 −

−B̂ g2 g3 g4 g5 g6 g7 g8 g9

Figure 4: An example of sequence alignment. A green bar
denotes zero penalty cost while a red bar represents penalty
cost of one. By inserting “gaps” at the beginning of A and
at the end of B, we obtain Â and B̂ which yield the optimal
alignment with total penalty of only two.

two heuristics for the simpler version. We first consider the
MCCP problem without any intermediate values. That is, ρi
can either be computed from scratch (following Equation 1)
or from another previously computed ρj . Next, we give a
heuristic to determine which intermediate values should be
pre-computed and re-used during the reconstruction.

5.2.1 Minimum Spanning Tree based Strategy
There is a similarity between the non intermediate value

MCCP problem and the minimum spanning tree problem
[12, 29]. Recall that ρi is a product of selected elements
from the public parameter 〈g0, g1, g2, . . .〉. Let si be the set
of indices of these terms. For any two ρi, ρj , we can define
their ”distance” as follows:

ρi = ρj ·
∏

a∈(si\sj)

ga ·
∏

b∈(sj\si)
g−1
b (3)

Hence, if the value of ρj is already known, one can de-
rive ρi from ρj with |si \ sj |+ |sj \ si| group multiplications.
On the other hand, one can also compute ρi following Equa-
tion 1. Consequently, M(i, j) = min(|S|−2, |si\sj |+|sj\si|)
is the minimum number of multiplications required to obtain
ρi given ρj . Based on this notion of M(i, j), the problem of
determining MCCP strictly without any intermediate values
is reducible to the minimum spanning tree problem.

Let G = (V,E) be a complete digraph in which V and
E denotes the set of vertices and the set of directed edges,
respectively. The set V comprises of |S| vertices. Each value
ρi maps to a vertex vi. The set E contains |S|(|S|−1) edges.
Let us further denote by eij a unidirectional edge connecting
vertex vi to vertex vj . Note that eij and eji are different
edges, as G is directed. For each edge eij , we set its weight
to M(i, j).

With the reduction described above, we can use any al-
gorithm which computes the minimum spanning tree of G
to solves for the efficient computation plan. One of the
well-known techniques computing minimum spanning tree
in directed graph is the Chu-Liu/Edmonds algorithm [12].
The fast implementation of this algorithm runs in O(V 2) for
dense graph [29].

5.2.2 Pre-computing and reusing intermediate val-
ues

As one may expect, the computation cost can be further
reduced if common intermediate values are pre-computed
and reused. We provide here an intuitive heuristic to deter-
mine those common intermediate values.

www.manaraa.com

Should one interpret each ρi as a sequence of |S| − 1 el-
ements, and intermediate values as shorter sequences com-
prising of x elements where x < |S| − 1, the problem of
finding the common intermediate values is reducible to the
local sequence alignment problem [27] — which is tasked to
determine “similar regions” between two sequences.

Sequence alignment is often considered as a textbook ex-
ample for dynamic program. In the most basic version, the
sequence alignment problem takes as input two sequences
A = a1 . . . am and B = b1 . . . bn over an alphabet Σ, to-
gether with penalty metrics αgap ≥ 0 for inserting a “gap”
and αab for matching an element a of one sequence against
an element b of the other sequence (presumably αab = 0
if a = b) and outputs an optimal “alignment” which mini-
mizes the total penalty. In this work, we utilize the Smith
- Waterman algorithm [27], which has various efficient and
scalable implementations [21, 20], to solve for the sequence
alignment problem.

Let us consider an example in Figure 4. The two
input sequences are A = g1g2g3g4g5g6g7g8 and B =
g2g3g4g5g6g7g8g9, αgap = 1, αab = 1 if a 6= b or αab = 0
otherwise. Simply matching A and B as-is (without insert-
ing any gap) incurs the penalty cost of eight. The optimal
alignment is formed by inserting a gap to the end of A and
another gap to the beginning of B, resulting in Â and B̂
whose alignment incurs the minimum penalty cost of two.

The most common intermediate values to be pre-
computed and reused are the similar regions found in the
the solution to the sequence alignment problem. For exam-
ple, if we are to compute ρ1 =

∏8
j=1 gj and ρ2 =

∏9
j=2 gj ,

we can represent ρ1 and ρ2 by the sequences A and B in
the above example (Figure 4). Since the similar region of A
and B is R = g2g3g4g5g6g7g8, the intermediate value to be
pre-computed is v =

∏8
j=2 gj . Effectively, we can compute

ρ1 and ρ2 from v with very low computation cost.
Let us denote the set of pre-computed intermediate values

as I, the set of all necessary ρi as D, we can now compute
the almost-optimal computation plan for D by solving the
minimum spanning tree on a complete digraph G = (V,E)
in which V represents elements of D ∪ I, while E contains
|V |(|V | − 1) edges. The weight of an edge eij connecting
vertices vi to vj is set to be the minimum number of group
multiplications required to compute the value represented
by vi given the value represented by vj .

Remarks.
The running time for computing the computation plan

(Section 5.2.1) or determining common intermediate values
(Section 5.2.2) are not of our concern. As it only involves
public data, it may be done on the server with presumably
powerful resource and is not counted toward the reconstruc-
tion time (Section 3.2).

5.3 Trade-off between number of aggregated
keys and reconstruction time

We make another observation that the reconstruction time
can be further reduced at the expense of splitting the query
into smaller sub-queries and issuing one aggregated key for
each of them. More specifically, one may partitions the set S
into a collection of k clusters, where each cluster corresponds
to one sub-query, and thus one aggregated key. Accordingly,
one needs to issue k aggregated keys instead of one single
key. However, the take is that the overall reconstruction

Table 1: Costs of encrypting one record, extracting aggre-
gated key and reconstructing a range query of size m, where
n is the system’s capacity (i.e. maximum number of sam-
ples to be encrypted). The ciphertext size is measured by
the number of group elements per sample.

KP-ABE KAC Ours
Mult. O(logn) 2 2
Exp. O(logn) 3 3Encrypt

Pairing 1 1 1
Mult. O(logn) m m
Exp. O(logn) 1 1Aggregate

Pairing 0 0 0

Mult. O(m logn) O(m2) O(m)
Exp. O(m logn) 0 0Reconstruct

Pairing O(m logn) m+ 1 m+ 1
Ciphertext

O(logn) 3 3
size

cost is lower.
The partition should be performed in such a way that

elements in each cluster is“close”to one another. Informally,
let v be the common intermediate value of ρi and ρj , we
define the distance between ρi and ρj by the number of
extra computation it takes to compute both values from the
common intermediate value v. In another word, the closer
the two elements are, the less multiplications are required
to compute them from v.

We employ the single-linkage clustering method [15] (im-
plemented using SLINK algorithm [26]) to perform the clus-
tering. In particular, each element in S is initially a cluster
by itself. The clusters are then sequentially merged until
only k clusters are left. The cluster merging are conducted
based on a distance function in such a way that at every
step, the two clusters with the shortest distance are merged
together.

The effectiveness of the partition, i.e. the reduction of
reconstruction time, depends on the definition of this dis-
tance function. We adopt the following distance function.
Let C(S) be the number of group multiplications required
to reconstruct all keys in S. This value, in turn, relies on
the computation plan according to which all the required ρi
are evaluated. Such a computation plan can be determined
using the techniques described in the previous section (Sec-
tion 5.2). For two clusters S1 and S2, their distance is simply
C(S1 ∪ S2).

In the literature, the single-linkage clustering method is
criticised to produce long thin clusters in which elements at
opposite ends of a cluster are of far distance, which may
lead to difficulties in defining classes subdividing the data.
However, its other characteristic which is to have a distance
of nearby elements residing in the same cluster small is of
greater interest. Indeed, this feature will allows a ρi value
to be computed efficiently from its nearby elements.

6. PERFORMANCE EVALUATION
This section compares performance of our proposed

method with KP-ABE [19] and KAC [10] without the pro-
posed fast reconstruction.

6.1 Performance Analysis

www.manaraa.com

23 26 29 212 215 218
10−1

100

101

102

103

104

105

Number of samples

E
n
cr
y
p
ti
on

ti
m
e
(s
ec
on

d
s)

KP-ABE

KAC

Figure 5: Encryption time

23 26 29 212 215 218

104

105

106

107

108

109

Number of samples

T
ot
al

ci
p
h
er
te
x
t
si
ze

(b
y
te
s) KP-ABE

KAC

Figure 6: Total ciphertext size

25 27 29 211 213 215

10−2

10−1

100

Size of Query Result (samples)

A
gg
re
ga
ti
on

ti
m
e
(s
ec
on

d
s)

KP-ABE

KAC

Figure 7: Aggregation time

25 27 29 211 213 215

10−1

100

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KP-ABE

KAC

Fast Reconstruction

Figure 8: Reconstruction time for Q1 & Q2.

Table 1 summarises the numbers of group operations,
i.e. multiplication, exponential and pairing, required by the
three procedures: (a) encryption of the samples, (b) aggre-
gation of the keys, and (c) reconstruction of the keys. It also
reports the size of the ciphertext with respect to the num-
ber of group elements. Observe that KP-ABE consistently
suffers from a O(logn) overhead factor in comparison with
KAC, which is arguably inevitable since logn attributes are
required to represent n indices. Since the total number of
samples can be very large (e.g. at 25 samples per second,
more than 2 millions samples will be generated every day),
this large overhead is hardly acceptable, especially for ci-
phertext size which affects the storage and communication
cost. Although KAC outperforms KP-ABE in almost all as-
pects, its reconstruction cost is quadratic, which renders the
scheme impractical in our application. By adopting KAC
encryption and key aggregation procedures, while introduc-
ing various techniques to boost-up its reconstruction cost,
our system achieves favourable performance in all aspects.
In particular, the proposed method reduces the number of
multiplications to linear on Q1 and Q2 queries.

As an interesting note, we find that although KAC re-
quires more group multiplications than KP-ABE during key
aggregation, they require much fewer number of expensive
exponentiations, and thus it is not clear which is more effi-
cient in practice.

6.2 Experimental Setup.
In our experiments, we use randomly selected AES keys

as the sample values. Hence, a sample can be represented
by a single group element. Such assumption is appropriate
since in practice, when the size of a single sample is large,

it is more efficient to encrypt the sample using symmetric
encryption such as AES with a randomly chosen key, then
apply the key aggregation on the symmetric keys.

To measure the performance of aggregation and recon-
struction on range (i.e. Q1) and down-sampling (i.e. Q2)
queries, the total number of samples is fixed at 218, while
the size of the query m = |S| varies from 25 to 215. The
query is a two-dimensional range (with the same width along
both dimensions) with downsampling when testing on KAC
and the proposed method. Since KP-ABE can only support
down-sampling of limited rate, we only conduct experiment
on the two-dimensional range query for KP-ABE.

For general queries (i.e. Q3), we conducted two set of
experiments. In the first set, we study the effectiveness of
our fast reconstruction techniques (Section 5.2). We eval-
uated the effectiveness of the computation plan with and
without pre-computation and reusing of intermediate values
against KAC’s reconstruction. In the second experiment set,
we examine the the speed up in reconstruction time at an
expense of issuing more aggregated keys (Section 5.3). The
queries are generated by selecting m indices randomly from
the range [1, n]. Let us call the ratio r = m/n the query
density. Various query sizes (m) and densities (r) are inves-
tigated. We do not study KP-ABE’s performance on general
queries, since it requires another algorithm to find a com-
pact logical expression for an arbitrary query, which could
be a separate topic of interest.

All experiments are performed on a system equipped with
Intel Core-i5-4570u@3.2Ghz processor and 8GB of RAM.
Our implementation employs Charm [1] and symmetric pair-
ings over Type-A (supersingular) curves configured with
160-bit Solinas prime, offering 1024-bit of discrete-logarithm

www.manaraa.com

29 210 211 212 213 214 215

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC
MST
MST & SA

(a) Reconstruction time when r = 0.5

29 210 211 212 213 214 215

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC
MST
MST & SA

(b) Reconstruction time when r = 0.75

29 210 211 212 213 214 215

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC
MST
MST & SA

(c) Reconstruction time when r = 0.9

29 210 211 212 213 214 215

102

103

104

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

MST
MST & SA

(d) Intermediate storage required in
reconstruction when r = 0.5

29 210 211 212 213 214 215

102

103

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

MST
MST & SA

(e) Intermediate storage required in
reconstruction when r = 0.75

29 210 211 212 213 214 215

102

103

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

MST
MST & SA

(f) Intermediate storage required in
reconstruction when r = 0.9

Figure 9: Fast reconstruction for Q3. MST indicates fast reconstruction using MCCP strictly without any intermediate values,
while MST & SA represents MCCP with intermediate values being pre-computed and reused.

29 210 211 212 213 214 215
100

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC
k=1
k= 4
√
m

k=2 4
√
m

(a) Reconstruction time with r = 0.5

29 210 211 212 213 214 215
100

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC
k=1
k= 4
√
m

k=2 4
√
m

(b) Reconstruction time with r = 0.75

29 210 211 212 213 214 215
100

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC
k=1
k= 4
√
m

k=2 4
√
m

(c) Reconstruction time with r = 0.9

29 210 211 212 213 214 215

103

104

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

k=1
k= 4
√
m

k=2 4
√
m

(d) Intermediate storage required in
reconstruction when r = 0.5

29 210 211 212 213 214 215

103

104

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

k=1
k= 4
√
m

k=2 4
√
m

(e) Intermediate storage required in
reconstruction when r = 0.75

29 210 211 212 213 214 215

103

104

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

k=1
k= 4
√
m

k=2 4
√
m

(f) Intermediate storage required in
reconstruction when r = 0.9

Figure 10: Trade-off between number of aggregated keys and reconstruction cost for Q3. k is number of sub-queries, each
sub-queries is associated with one aggregated key.

security6. For consistency, the KP-ABE implementation in
our experiments is configured to provide the 80-bit security.
Each experiment is repeated 10 times and average results,
with time and size are measured in seconds and bytes re-

6Though there exists no direct comparison, this level of se-
curity is approximate to the 80-bit security.

spectively, are reported.

6.3 Experiment result

6.3.1 Encryption time.
Figure 5 compares the encryption time of KP-ABE and

KAC (our system adopt KAC encryption procedure) under

www.manaraa.com

log-log scale, with the total number of samples range from
24 to 218. The experiment results agree with the analysis
in the previous section. The cost of encryption incurred by
KP-ABE is several times higher than that of KAC. For ex-
ample, to encrypt 218 items, KP-ABE needs 17 hours, while
KAC only requires 70 minutes (i.e. faster by almost 15×).
Note that the main overhead of KP-ABE’s encryption lies in
carrying out exponent operations, which directly depends on
the total number of samples, and thus the overhead would
be even higher for larger datasets.

6.3.2 Ciphertext Size
A main disadvantage of KP-ABE lies in its ciphertext size.

Figure 6 reports total ciphertext size for various n - the total
number of samples to be encrypted. When n = 218, KP-
ABE produces ciphertext of size approximately 10× larger
than KAC. This is so because KAC’s ciphertext comprises
of only three group elements, whereas KP-ABE’s ciphertext
contains (3A + 2) group elements, where A is the number
of attributes associated with a ciphertext. The value of A
varies for different ciphertext, but its expected value is at
least 1

2
logn. Similar to the encryption time, the larger the

dataset is, the more superior KAC is to KP-ABE in term of
ciphertext size.

6.3.3 Aggregation time.
As shown in Table 1, KP-ABE’s key aggregation time only

depends on n - the total number of samples. KAC, on the
other hands, aggregates keys in O(m) time. It turns out
that, when m is less than 215, KP-ABE needs longer time
compares to KAC (Figuer 7).

6.3.4 Reconstruction time.
Figure 8 shows the reconstruction time for Q1 and Q2

queries. For small m, reconstruction time incurred by ABE
is higher than KAC, which is due to the expensive pairing
operations. However, for larger m, KAC starts to perform
worse than KP-ABE because of the quadratic growth the
number of required multiplications. Our proposed method,
on the other hand, achieves linear reconstructing time.
When m = 215, it can reconstruct the 215 keys within 126
seconds, whereas KAC needs 3 hours (i.e. a speed-up of
almost 90×).

For Q3 queries, we observe that the higher the query den-
sity is, the more effective our fast reconstruction techniques
are. Though the gain is negligible when r < 0.5, it be-
comes more evident for larger r – achieving from 2.6× to 8×
speedup over original KAC reconstruction cost. We also wit-
ness a better reconstruction time – upto 3× difference com-
pared to fast reconstruction using computation plan strictly
without any intermediate values – when intermediate values
are pre-computed and reused (Figures 9a, 9b, 9c).

Figures 9d, 9e, 9f depict temporary storage required to
save the pre-computed intermediate values during the re-
construction. At higher density, less temporary storage is
needed, because the intermediate values are common to
more elements. The requirement on temporary storage is
at most a few KB (e.g. 12.5KB for reconstructing 215 keys
when r = 0.5).

We also evaluate the trade-off between number of aggre-
gated keys and reconstruction time (Figures 10a, 10b, 10c).
For a Q3 query asking for m samples, with 4

√
m aggregated

keys, reconstruction time can be speeded-up by upto 13×.

With a cost of 2 4
√
m keys, upto 19× improvement can be

achieved. Nevertheless, we note that for small queries, it
is not worth issuing more aggregated keys, because the in-
crease in the number of pairing operations may lengthen the
reconstruction time.

Recall that intermediate values can only be shared among
elements which are corresponding to the same aggregated
keys. As more aggregated keys are issues, the reconstruc-
tion becomes more independent, and thus more intermediate
values need to be stored. With k = 4

√
m, as high as 15 KB of

temporary storage is required, while that value is increased
to 19 KB when k = 2 4

√
m are issued. In all of our experi-

ments, the requirement on temporary storage is only a few
KB, which is quite reasonable even for resource constrained
devices.

7. SYSTEM DESIGNS
In this section, we give two possible designs that incor-

porate key aggregation. We consider two types of sensors;
one with Public-key Cryptosystem (PKC) capability, and
the other that is only capable of performing standard sym-
metric key cryptosystem such as AES and SHA-1. We refer
to the first category as PKC-enabled sensors and the later
as low-powered sensors.

7.1 System with PKC-enabled sensors

Owner

User

PKC-enabled
Sensor

Cloud Storage

(1)PK

(4)t,KS(3)qS
(2) KAC-
encrypted
sensor data

(6)C

(5)t

Figure 11: System model for PKC-enabled sensors

(1) During system setup, the owner distributes the public
key PK to all entities, and an unique identity ID to each
sensor (Figure 11). The identity ID ’s are not secrets and are
made public. (2) For each sample (i, x), the sensor encrypts
the sample value x with the index i using KAC’s encrypt
algorithm to obtain a ciphertext c. It then streams the c
together with the index i to the storage server. In situa-
tion where sensor samples are of large size, (e.g. images),
they are encrypted using AES with a randomly generated
key k, whereas the key k is being encrypted by KAC under
an index i of the sensor sample (similar to sensor sample
of small size). The two ciphertexts (encrypted sample and
encrypted symmetric key) and the corresponding index are
then streamed to the server.

(3) When an user asks for access to a subset C, whose in-
dices fall in S, he sends the query qS to the owner. (4) The
owner issues an aggregated key KS to the user, together
with an authentication ticket t. (5) The user presents the
authentication ticket t to the storage server as a proof that
he is authorised to access the C. (6) Upon verification, the
server sends the requested ciphertexts to the user, which
are later decrypted using the aggregated key KS . In case

www.manaraa.com

of large samples, she also needs to download correspond-
ing encrypted symmetric keys. The encrypted keys are first
reconstructed, and then used to decrypt the encrypted sam-
ples.

The incorporation of the authentication ticket can be
based on standard protocol such as Kerberos [22, 24]. Al-
though the authentication ticket is ineffective in scenario
where the users collude with the server, it forms another
layer of defence to prevent unauthorised downloading of the
ciphertexts.

7.2 System with low-powered sensors

Owner

User

Low-powered
Sensor

Cloud Storage

Proxy

(1)KID

(5)
t,KS

(4)qS
(2) AES-
encrypted
sensor data

(1)PK, KID

(3) AES keys
encrypted
by KAC

(7)C

(6)t

Figure 12: System model for low-powered sensors

Figure 12 shows the system design for low-powered sen-
sors, which are only capable of conducting non-expensive
cryptographic operations such as AES or SHA-1. To ad-
dress the resource constraints of these low-powered sensors,
we introduce a trusted encryption proxy. This proxy also
helps to relieve the owner’s computation load.

(1) During system setup, the owner broadcasts the public
key PK to all entities except the low-powered sensors. The
owner also distributes an unique identity ID and a shared
secret key KID to each sensor. (2) For each sensed sample
(i, x), the sensor generates a symmetric encryption key ki,ID
using a cryptographic pseudorandom function on input KID

and the index i. The sensor then encrypts the sample value
x obtaining c, and streams (i, c) to the storage server.

All secret KID are also shared with the encryption proxy.
Because the proxy (which actually represents the data
owner) has knowledge of locations and frequencies at which
sensor data are collected, it can infer the set of indices asso-
ciated with the samples. With the knowledge of the indices
and all sensors’ secret keys, (3) it can replicate a symmetric
key ki,ID. Each of these AES keys is encrypted with KAC
under the corresponding sample index, giving ci,ID.

The ciphertexts together with their indices, i.e.
(i, ci,ID)’s, are then sent to the storage server. Note that
this process need not be performed in realtime. Rather, the
proxy can replicate, encrypt and send the encrypted AES
keys to the cloud storage in batches well before the actual
sensing. In addition, although the encryption proxy has the
secret KID, it cannot derive the owner’s secret key. The
remaining steps (step (4) to (7) in Figure 12) are similar to
the previous setting.

Compare to the PKC-enabled sensor, if a low-powered
sensor ID is compromised, the secret KID could be re-
vealed. With KID, the adversary can decrypt all previously
encrypted sensor samples generated by that sensor.

8. RELATED WORK
Hierarchical access control. Several cryptographic key

assignment schemes exploit hierarchical structures, such as
trees, to maintain keys for various sets of objects [30, 3]. A
key for an internal node is used to derive keys for its descen-
dant nodes. These approaches efficiently support aggregat-
ing key for simple access policies. Other schemes can sup-
port more complicated access policies, such as those that are
described by cyclic or acyclic graphs [32, 2]. Benaloh et al.
introduced an encryption scheme supporting delegating de-
cryption capability with flexible hierarchy [4]. This scheme
achieves constant-size aggregated decryption keys. However,
it is not clear how to extend the schemes to maintain encryp-
tion keys for multidimensional objects whose access policies
do not follow any hierarchical structure.

Key-policy Attributed-based Encryption. KP-ABE
enables various ciphertexts to be decrypted by one single
key. This technique associates a set of attributes to a ci-
phertext and a policy to a decryption key, which is able
to decrypt all ciphertext whose attributes conform to its
policy [9, 19]. ABE obtains collusion-resistance at a cost
of secret keys’ compactness. More specifically, the key size
is proportional to the number of attributes it is associated
with. Other alternative can reduce size of decryption keys,
but inevitably increase ciphertext’s size [18, 23]. These ap-
proaches requires many bilinear-mapping operations in their
executions, which renders their performance cost prohibitive
and thus impractical.

Multi-Dimensional Range Query over Encrypted
Data. Supporting complex queries over encrypted data is
also of interest. Boneh et al. presented a primitive named
Hidden Vector Encryption (HVE) to enable range and sub-
set queries [7]. This scheme results in O(dt) encryption time,
ciphertext size and O(d) decryption key size and decryption
cost, where d is the number of dimensions and t the number
of points. Shi et al. proposed a construction adopting a spe-
cialized data structure for range query evaluation [25]. Its
encryption cost, ciphertext size and decryption key size are
all O(d log(t)) while decryption cost is O((log(t))d). Because
these schemes consider some security requirements which
are not relevant in our application, such as secrecy of all
attributes, they suffer from a poor performance and not ap-
plicable in our context.

9. CONCLUSION
Privacy has always been a serious concern in outsourced

storage. The data stored on the potentially curious cloud
storage should be protected by a strong cryptographic mean.
However, to have data encrypted brings forth fundamental
technical challenges in sharing the data with other entities,
including sharing with compute-servers that are authorised
to process selected data on a need-to-know basis. To support
fine-grained access control, we need a mechanism that can
efficiently aggregate and reconstruct large number of keys.
Although there are many known key aggregation techniques,
they are computationally intensive and not practical in our
applications.

In this work, we focus on sensor data, especially time-
series data that are continuously sensed, encrypted and
streamed to the cloud. The temporal and spatial arrange-
ments of these time-series data lead to queries of the form
of multidimensional range and down-sampling that can be

www.manaraa.com

exploited for efficiency. We introduce algorithmic enhance-
ment for the known KAC. The enhancement is significant
for range and down-sampling queries, achieving 90 times
speed-up in reconstructing 215 keys. Different heuristics
for handling general queries attain upto 8 times speed-up
in reconstructing the same number of keys. Finally, our
clustering-based method for trading off between number of
aggregated keys to be issued and reconstruction time is also
proven to be efficient, as evidenced by the 19 times speed-up
compared to original KAC. In sum, our proposed fast recon-
struction techniques address a main hurdle in adopting key
aggregation in large datasets.

10. REFERENCES
[1] J. A. Akinyele, M. D. Green, and A. D. Rubin. Charm:

A framework for rapidly prototyping cryptosystems.
Cryptology ePrint Archive, Report 2011/617.

[2] M. J. Atallah, M. Blanton, N. Fazio, and K. B.
Frikken. Dynamic and efficient key management for
access hierarchies. ACM Trans. Inf. Syst. Secur., 2009.

[3] G. Ateniese, A. D. Santis, A. L. Ferrara, and
B. Masucci. Provably-secure time-bound hierarchical
key assignment schemes. Cryptology ePrint Archive,
Report 2006/225.

[4] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter.
Patient controlled encryption: Ensuring privacy of
electronic medical records. In CCSW 2009.

[5] D. Boneh, C. Gentry, and B. Waters. Collusion
resistant broadcast encryption with short ciphertexts
and private keys. In CRYPTO 2005.

[6] D. Boneh, C. Gentry, and B. Waters. Collusion
resistant broadcast encryption with short ciphertexts
and private keys. In CRYPTO 2005.

[7] D. Boneh and B. Waters. Conjunctive, subset, and
range queries on encrypted data. In Theory of
cryptography. Springer, 2007.

[8] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An
improved lp-based approximation for steiner tree. In
STOC, 2010.

[9] M. Chase and S. S. Chow. Improving privacy and
security in multi-authority attribute-based encryption.
In CCS 2009.

[10] C.-K. Chu, S. S. M. Chow, W.-G. Tzeng, J. Zhou, and
R. H. Deng. Key-aggregate cryptosystem for scalable
data sharing in cloud storage. IEEE TPDS, 2014.

[11] C.-K. Chu, S. S. M. Chow, W.-G. Tzeng, J. Zhou, and
R. H. Deng. Supplementary material for key-aggregate
cryptosystem for scalable data sharing in cloud
storage, 2014.

[12] Y.-J. Chu and T.-H. Liu. On shortest arborescence of
a directed graph. Scientia Sinica, 1965.

[13] M. R. Garey and D. S. Johnson. The rectilinear
steiner tree problem is np-complete. SIAM Journal on
Applied Mathematics, 1977.

[14] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access

control of encrypted data. In CCS 2006.

[15] J. A. Hartigan. Clustering algorithms. 1975.

[16] M. M. Hassan, B. Song, and E.-N. Huh. A framework
of sensor-cloud integration opportunities and
challenges. In ICUIMC ’09.

[17] M. H. Hayes. The reconstruction of a multidimensional
sequence from the phase or magnitude of its fourier
transform. IEEE Trans Sig. Process, 1982.

[18] S. Hohenberger and B. Waters. Attribute-based
encryption with fast decryption. In PKC 2013.

[19] A. Lewko, A. Sahai, and B. Waters. Revocation
systems with very small private keys. In IEEE S & P,
2010.

[20] Y. Liu, B. Schmidt, and D. L. Maskell. Cudasw++
2.0: enhanced smith-waterman protein database
search on cuda-enabled gpus based on simt and
virtualized simd abstractions. BMC research notes, 3,
2010.

[21] S. A. Manavski and G. Valle. Cuda compatible gpu
cards as efficient hardware accelerators for
smith-waterman sequence alignment. BMC
bioinformatics, 9, 2008.

[22] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The
kerberos network authentication service (v5). RFC
4120, 2005.

[23] T. Okamoto and K. Takashima. Achieving short
ciphertexts or short secret-keys for adaptively secure
general inner-product encryption. Cryptology ePrint
Archive: Report 2011/648, 2012.

[24] A. A. Pirzada and C. McDonald. Kerberos assisted
authentication in mobile ad-hoc networks. In ACSC,
2004.

[25] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and
A. Perrig. Multi-dimensional range query over
encrypted data. In IEEE S & P 2007.

[26] R. Sibson. Slink: an optimally efficient algorithm for
the single-link cluster method. The Computer Journal,
16(1):30–34, 1973.

[27] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. Journal of molecular
biology, 147, 1981.

[28] H. Takabi, J. Joshi, and G.-J. Ahn. Security and
privacy challenges in cloud computing environments.
IEEE S & P, 2010.

[29] R. E. Tarjan. Finding optimum branchings. Networks,
1977.

[30] W. G. Tzeng. A time-bound cryptographic key
assignment scheme for access control in a hierarchy.
TKDE, 2002.

[31] M. Yuriyama and T. Kushida. Sensor-cloud
infrastructure-physical sensor management with
virtualized sensors on cloud computing. In NBiS’10.

[32] Q. Zhang and Y. Wang. A centralized key
management scheme for hierarchical access control. In
GLOBECOM, 2004.

